Tiết kiệm thời gian, kinh phí, nguyên vật liệu, tránh được những trường hợp rủi ro, nguy hiểm trong điều kiện thực, giảm tác động xấu tới môi trường…, thậm chí có thể làm được cái không thể làm trong điều kiện thực. Đó là những gì công nghệ mô phỏng có thể mang lại.
Mô phỏng một vụ va chạm ion chì trong máy dò ALICE tại Trung tâm CERN
Mô phỏng là quá trình phát triển mô hình hoá để mô phỏng một đối tượng cần nghiên cứu. Thay cho việc phải nghiên cứu đối tượng thực, cụ thể mà nhiều khi là không thể hoặc tốn kém, người ta mô hình hoá đối tượng đó trong phòng thí nghiệm và tiến hành nghiên cứu đối tượng đó dựa trên mô hình này.
Công nghệ mô phỏng liên quan đến nhiều ngành khoa học: toán, vật lý, mô hình hóa, tự động, điều khiển học… và đặc biệt là CNTT. Đây là công cụ đa dạng và linh hoạt đặc biệt thích ứng với việc nghiên cứu thử nghiệm và giáo dục đào tạo.
Với tổng cộng 16.000 lõi xử lý trong 1.000 máy tính được liên kết với nhau, hệ thống máy tính mô phỏng não bộ đặt tại phòng thí nghiệm bí mật của Google đã có thể tự nhận biết được đâu là con mèo qua những đoạn video trên Youtube, tờ New York Times tiết lộ về dự án.
Công nghệ mô phỏng ngày càng được sử dụng rộng rãi trong mọi lĩnh vực hoạt động của con người từ mô phỏng các vụ nổ hạt nhân, phản ứng hóa học đến mô phỏng các cơn bão và thảm họa thiên nhiên như động đất, lũ lụt; từ mô phỏng trong nghiên cứu, phát triển khoa học, công nghệ đến ứng dụng mô phỏng trong lĩnh vực giáo dục, đào tạo. Một chương trình máy tính có thể mô phỏng diễn biến điều kiện thời tiết, các mạch điện tử, phản ứng hóa học, cơ điện tử, hệ thống điều khiển tương tác, thậm chí cả các quá trình sinh học cực kỳ phức tạp. Về lý thuyết, bất kỳ sự vật, hiện tượng nào có thể được mô tả bằng dữ liệu và phương trình toán học đều có thể được mô phỏng trên máy tính. Mô phỏng thường là rất khó khăn vì hầu hết các hiện tượng tự nhiên có số lượng gần như vô hạn các tham số gây ảnh hưởng. Vì vậy để phát triển các ứng dụng mô phỏng có hiệu quả cần xác định những yếu tố quan trọng nhất ảnh hưởng đến mục tiêu của nhiệm vụ mô phỏng.
Dùng chương trình mô phỏng BlackMax để tìm kiếm các bằng chứng về các chiều của không gian còn lại có thể tồn tại trong vũ trụ.
Ngoài ra, để bắt chước các quá trình nhằm xem cách chúng hoạt động theo các điều kiện khác nhau, người ta còn dùng phương pháp mô phỏng để kiểm tra lý những thuyết mới. Sau khi tạo ra một lý thuyết về mối quan hệ nhân quả, nhà khoa học có thể hệ thống hóa các mối quan hệ bằng một chương trình máy tính. Nếu chương trình sau đó hoạt động trong cùng một cách như là quá trình thực tế thì ta có thể kết luận và dự đoán các mối quan hệ được đề xuất là chính xác.
Lịch sử phát triển
Từ 2000 năm trước, Tôn Tử - nhà chiến lược của Trung Hoa cổ đại - đã viết trong binh pháp của mình là: trước mỗi trận chiến, người cầm quân hãy suy nghĩ cho chín muồi trước khi đưa ra bất kỳ quyết định nào. Đó chính là ý tưởng chủ đạo của khái niệm mô phỏng ngày nay.
Các trò chơi mô phỏng chiến tranh đã có lịch sử trong thế kỷ XVII và XVIII ở nước Phổ, xuất phát từ trò chơi cờ tướng để mô phỏng các nguyên tắc sử dụng lực lượng quân sự đối kháng.
Thế kỷ 19 đã chứng kiến sự cải tiến của những trò chơi mô phỏng dựa trên các nghiên cứu cẩn thận về các hoạt động quân sự. Mục đích là để mô hình hóa các hoạt động quân sự một cách thực tế nhất có thể. Người ta đã thay thế bàn cờ bằng các bảng cát và sau đó thay thế bảng cát bằng các bản đồ tỷ lệ lớn. Mô phỏng đã được đưa vào huấn luyện sỹ quan quân đội Đức trong việc lập kế hoạch và thử nghiệm các hoạt động quân sự. Thành công quân sự của Đức trong thế kỷ 19 một phần là nhờ sử dụng mô phỏng để dạy chiến thuật và luyện tập ra quyết định cho sỹ quan và binh lính trước khi bước vào chiến đấu thật. Người Đức tiếp tục tăng cường sử dụng mô phỏng như là một kỹ thuật huấn luyện và lập kế hoạch sử dụng lực lượng trong thế chiến I. Do những giới hạn của Hiệp ước Versailles ngăn cản nước Đức nghiên cứu phát triển tiềm lực quân sự, quân đội Đức đã sử dụng mô phỏng để tiến hành huấn luyện thực tế với các thiết bị và hệ thống vũ khí mô phỏng để chuẩn bị cho Thế chiến II. Người Mỹ cũng đã bắt đầu sử dụng mô phỏng theo cách trò chơi chiến tranh mà người Đức đã dùng từ cuối thế kỷ 19 và đã ứng dụng nó trong thế chiến II.
Kuwait Flight Simulation Center
A driving training center
A drone control system based on a NASA simulator
Sau thế chiến II. Quân đội Hoa Kỳ tập trung nỗ lực mô phỏng của mình vào hoạt động nghiên cứu và phân tích hệ thống.
Với sự phát triển mạnh mẽ của CNTT, từ thập niên 1980 các nước phát triển bắt đầu phát triển các ứng dụng mô phỏng nhằm không chỉ đáp ứng yêu cầu to lớn của ngành công nghiệp giải trí mà còn phục vụ nhu cầu ngày càng tăng của đào tạo và giáo dục trong cả quân sự và dân sự.
Hiện nay, mô phỏng, từ vai trò là một công cụ hỗ trợ nghiên cứu cho quân đội trong một số mặt nào đó, đã trở thành một trọng tâm chính và là yếu tố quan trọng nhất trong cấu trúc và quy hoạch của nhiều lĩnh vực quân sự trên toàn thế giới, không chỉ về đào tạo mà còn cả trong việc lên kế hoạch và thực các nhiệm vụ của quân đội.
Mô phỏng là một trong số ít các khu vực mà ngân sách quân sự đã không phải chịu đựng nặng nề như những lĩnh vực khác, cơ bản là vì mô phỏng được sử dụng ngày càng nhiều hơn để thay thế cho việc đào tạo truyền thống với thiết bị thực. Nó cho phép các nhà hoạch định quân sự chuẩn bị và đào tạo lực lượng của họ cho những cuộc đụng độ phức tạp trong tương lai. Mô phỏng đã được sử dụng để dự báo, phân tích và lập kế hoạch cho các cuộc xung đột tiềm năng với độ chính xác mà công nghệ thế hệ trước không thể đạt được.
Công nghệ mô phỏng sẽ cho phép các nhà sản xuất xây dựng các hệ thống quân sự và thương mại nhanh hơn, tốt hơn và với chi phí thấp hơn. Với tốc độ hiện tại của phát triển công nghệ, những gì được coi là đầu tư hôm nay sẽ trở thành mẫu thử nghiệm ngày mai chỉ sau một thời gian rất ngắn.
The game industry has grown by simulation technology
Combat pilot training equipment
Battlefield simulation in VR-Forces
Các thành phần một hệ thống mô phỏng
Để xây dựng một hệ thống mô phỏng cần mô hình hóa cái mà người ta muốn mô phỏng. Sau đó xây dựng mối quan hệ giữa các đối tượng và thực thể tham gia hệ thống mô phỏng. Tiếp đó cần có các thuật toán và chương trình bảo đảm toán học cho hoạt động của từng thực thể, đối tượng và toàn bộ hệ thống. Tùy theo bài toán cụ thể mà việc bảo đảm vật lý, vật chất cho quá trình mô phỏng có thể khác nhau.
Để tiến hành mô phỏng một sự vật, hiện tượng, người ta sử dụng ba loại mô hình: mô hình toán học, mô hình vật lý và các quy trình.
Mô hình toán học bao gồm các thuật toán và phương trình toán học.
Quy trình phát triển ứng dụng mô phỏng
Mô hình vật lý mô phỏng về mặt vật lý của một đối tượng và mối liên quan đến các đối tượng, mô hình khác trong các loại hình mô phỏng.
Các quy trình là biểu hiện của mối quan hệ năng động của các tình huống cụ thể thể hiện bởi các quá trình toán học, vật lý và logic.
Phần cứng mô phỏng là các thiết bị liên quan đến các hệ thống máy tính, các hệ thống truyền thông, điện tử, cơ khí và các hệ thống trang thiết bị khác được tích hợp phục vụ mô hình hóa các thực thể tham gia mô phỏng.
Phần mềm mô phỏng là một tập hợp các thuật toán (chương trình máy tính) “bắt chước” dựa trên quá trình hoạt động của mô hình một hiện tượng thực tế. Về cơ bản, đó là một chương trình máy tính cho phép người sử dụng dùng để quan sát một hoạt động thông qua mô phỏng mà không phải thực hiện thật hoạt động đó. Phần mềm mô phỏng được sử dụng rộng rãi để kiểm tra thiết kế một sản phẩm nào đó để thấy được sản phẩm cuối cùng với đầy đủ thông số kỹ thuật tốt nhất mà không tốn kém trong quá trình sửa đổi. Phần mềm mô phỏng tương tác với thời gian thực thường được sử dụng từ các trò chơi (games) đến các ứng dụng trong công nghiệp, quân sự để giảm bớt các chi phí hoạt động thật rất tốn kém, chẳng hạn như dùng để huấn luyện các phi công tập lái máy bay, các nhà khai thác vận hành nhà máy điện hạt nhân, mô phỏng thời gian thực của các phản ứng vật lý, hóa học… đào tạo thực hành trong các môi trường độc hại, rủi ro…
Mô phỏng mang lại lợi ích to lớn: Tiết kiệm thời gian, kinh phí, nguyên vật liệu, tránh được những trường hợp rủi ro, nguy hiểm trong điều kiện thực, giảm tác động xấu tới môi trường…, thậm chí có thể làm được cái không thể làm trong điều kiện thực.
Thực tế ảo
Thực tế ảo (virtual reality - VR) là một thuật ngữ dùng để chỉ một hệ thống giao diện cấp cao giữa người sử dụng và máy tính. VR có khả năng mô phỏng các sự vật, hiện tượng theo thời gian thực và tương tác với người sử dụng thông qua việc tổng hợp các kênh cảm giác.
Lần đầu tiên xuất hiện vào khoảng đầu thập kỷ 90 nhưng trong vòng gần chục năm trở lại đây Công nghệ thực tế ảo mới phát triển thực sự nhờ tính lưỡng dụng (trong cả dân dụng lẫn quân sự) và đóng vai trò là công nghệ mũi nhọn ở Mỹ và châu Âu.
Theo dự đoán của công ty nghiên cứu Gartner, công nghệ thực tế ảo đứng đầu danh sách 10 công nghệ chiến lược năm 2009. Tại Mỹ và châu Âu thực tế ảo đã và đang trở thành một công nghệ mũi nhọn nhờ khả năng ứng dụng rộng rãi trong mọi lĩnh vực (nghiên cứu và công nghiệp, giáo dục và đào tạo, du lịch, dịch vụ bất động sản, thương mại và giải trí...) và tiềm năng kinh tế, cũng như tính lưỡng dụng (trong dân dụng và quân sự) của nó.
Công nghệ thực tế ảo đem lại lợi nhuận to lớn cho các hãng phần mềm Game giải trí
Sử dụng đồ họa 3D để mô phỏng tạo nên các cảnh hoành tráng trong phim 3D “Avarta”
Nguồn: www.pcworld.com.vn
タグ
関連ニュース

持続可能な建築設計:建築家が知るべき5つの指標
はじめに世界中でエネルギー基準がますます厳しくなる中、建築家は多様な課題に対応する必要があります。最初のステップは、初期段階からの分析と多分野との連携のために、重要な指標を理解することです。建築物は世界のCO2排出量の39%を占めており、設計業界はデータに基づくエネルギー効率の統合へと進化しています。この変化は、建築家が建物性能の専門家としての役割を担うようになり、高効率かつ健康的な空間の創出を可能にします。以下は、すべての建築家が知っておくべき持続可能な建築設計における重要な5つの指標です。 1. エネルギー使用強度(EUI - kBtu/ft²/年)EUIは、建物の運用に必要な年間エネルギー消費量を示します。統合的な設計によって、運用コストとメンテナンスコストを削減し、空気の質、温熱快適性、自然採光の向上が期待できます。エネルギーシミュレーションを行う際は、設計上のあらゆる決定がEUIにどう影響するかを理解することが重要です。建物構造、窓の割合、受動的・能動的手法、空調負荷などがEUIに大きく関与します。EUIは「年間エネルギー消費量 ÷ 床面積」で算出され、単位はkBtu/ft²/年です。EUIを理解・予測することで、年間のエネルギーコストを見積もることができます。主な構成要素は暖房、冷房、照明、機器、ファン、ポンプ、給湯です。 2. 日照計画 – sDAとASEsDA(空間的昼光自律性):作業面(床から76cm)において、年間の勤務時間(8時~18時)の50%以上にわたり、300ルクス以上の自然光が得られる床面積の割合を示します。ASE(年間日射曝露):年間250時間以上にわたり、直射日光で1000ルクスを超える床面積の割合。過度な日射はグレアや冷房負荷の増加を招く可能性があります。効果的な自然採光設計には、建物形状、材料、内装の色(天井、壁、床)、庇・ルーバー・反射棚などの日射遮蔽装置、隣接建物や植栽などの外的要素も関係します。 3. カーボン排出量(CO2eトン/年)– 埋め込みカーボンと運用カーボン埋め込みカーボン(Embodied Carbon):材料のライフサイクル全体(採掘、製造、輸送、設置、交換、解体、処理)で発生するGHG排出量。運用カーボン(Operational Carbon):建物の運用・維持管理におけるGHG排出(空調、照明などのエネルギー使用を含む)。設計初期段階で評価を行えば、埋め込みカーボンを最大80%削減可能です。パリ協定の目標を達成するには、建築からの排出削減が不可欠です。 4. 屋内水使用強度(WUI - gal/ft²/年)WUIは、1平方フィートあたりの年間飲料水消費量を示します。飲料水使用は地球全体の淡水資源の大部分を占めるため、水利用の効率化は極めて重要です。主な対策は以下の通り:...
詳細を見る
高性能建築設計
第1部:はじめに 「高性能」という言葉は、優秀な学生、才能あるバイオリニスト、勤勉な社員など、さまざまなイメージを呼び起こします。共通するのは、平均を超え、期待を上回り、優れた方法で成果を上げるという点です。彼らは限られた条件の中で最善の結果を出し、実行過程の質も確保します。最も重要なのは、その優秀さを持続させ、自身と周囲に良い影響を与えることです。 このような特徴は、高性能建築(High-Performance Buildings – HPBs)にも当てはまります。HPBは統合的なアプローチで設計され、優れた設計品質を達成するために多様な基準に焦点を当てています。米国エネルギー独立安全保障法(EISA)2007年は、HPBを次のように定義しています: 「建物のライフサイクル全体にわたり、エネルギー節約、環境、安全性、耐久性、アクセス性、コスト効率、生産性、持続可能性、機能性、運用性などの主要な性能要素を統合的かつ最適に設計された建物。」 この定義は建築性能のあらゆる側面を網羅していますが、現代の多くのHPBは、エネルギー効率、経済的利益、そして居住者の健康に焦点を当てています。人の快適性や環境への影響を包括的に考慮することで、HPBは従来の「持続可能な設計」から一歩進んだ総合的な品質設計の基準を追求します。これは、主に炭素排出ゼロを目標とするAIA 2030のような従来の目標とは異なる包括的なアプローチです。 第2部:なぜ高性能設計が重要なのか? 高性能建築の設計には、多くの基準や複雑な要素が関わるため、本当にその努力に見合う価値があるのか疑問に思う人もいるかもしれません。その答えは明確です:「はい、価値があります」。 現在、建築物は世界全体の**年間CO₂排出量の約40%**を占めており、その多くは運用時のエネルギー消費や建設材料の製造によるものです。 🌍 環境への直接的・間接的影響 建物は環境に間接的に影響を与えるだけでなく、地域の生態系にも直接的な損害をもたらすことがあります。たとえば: 脆弱な地域への建設 在来植生の破壊 生物多様性の低下 水流や自然の水循環への干渉 💧...
詳細を見る
建築家のためのガイド:持続可能な設計を通じて2030年目標を達成する
持続可能な未来を設計する 目次 2030チャレンジの概要 常にパッシブ戦略から始める 建築形状の検討 効果的な建物外皮の設計 空気漏れと施工の実践 アクティブ戦略 先進的な建物制御システム 省エネルギー機器とシステム 再生可能エネルギー 結論 第1章:2030チャレンジの概要 「2030チャレンジ」は、建築業界全体がエネルギー効率の最適化戦略を優先し、建物が環境に与える負の影響を最小限に抑えることを目的とした、全国規模の取り組みです。このイニシアチブは、報告のための標準的な枠組みを提供し、すべての建築設計会社が年間エネルギー使用量(EUI)の削減目標を競い合うことを可能にします(2023年の目標は基準値から80%の削減)。 2006年以降、アメリカ建築家協会(AIA)は「2030チャレンジ」を採用し、建築設計会社に対し、化石燃料の消費、温室効果ガス(GHG)の排出、およびエネルギー使用量の削減をプロジェクトにおいて推進するよう奨励しています。2030年に向けて、削減目標は段階的に増加し、すべての参加企業がネットゼロ(正味の排出量がゼロ)を達成するための経験と知識を蓄積することが期待されています。 第2章:常にパッシブ戦略から始める パッシブ戦略(またはパッシブ設計)は、建物の内部空間をエネルギーを使用せずに快適な温熱環境に保つために、地域の気候や現地の条件を活用する設計手法です。これらの要素は、自然の条件を利用して空間を冷却、加熱、日射遮蔽、または換気し、冷暖房の負荷を軽減します。 パッシブ戦略を採用する設計には、制約要因を理解し、機械的なシステムに頼らずに設計上の解決策を提供することが求められます。一般的な例として、以下が挙げられます: 🔸 建物の形状と方位...
詳細を見る