Tiết kiệm thời gian, kinh phí, nguyên vật liệu, tránh được những trường hợp rủi ro, nguy hiểm trong điều kiện thực, giảm tác động xấu tới môi trường…, thậm chí có thể làm được cái không thể làm trong điều kiện thực. Đó là những gì công nghệ mô phỏng có thể mang lại.
Mô phỏng một vụ va chạm ion chì trong máy dò ALICE tại Trung tâm CERN
Mô phỏng là quá trình phát triển mô hình hoá để mô phỏng một đối tượng cần nghiên cứu. Thay cho việc phải nghiên cứu đối tượng thực, cụ thể mà nhiều khi là không thể hoặc tốn kém, người ta mô hình hoá đối tượng đó trong phòng thí nghiệm và tiến hành nghiên cứu đối tượng đó dựa trên mô hình này.
Công nghệ mô phỏng liên quan đến nhiều ngành khoa học: toán, vật lý, mô hình hóa, tự động, điều khiển học… và đặc biệt là CNTT. Đây là công cụ đa dạng và linh hoạt đặc biệt thích ứng với việc nghiên cứu thử nghiệm và giáo dục đào tạo.
Với tổng cộng 16.000 lõi xử lý trong 1.000 máy tính được liên kết với nhau, hệ thống máy tính mô phỏng não bộ đặt tại phòng thí nghiệm bí mật của Google đã có thể tự nhận biết được đâu là con mèo qua những đoạn video trên Youtube, tờ New York Times tiết lộ về dự án.
Công nghệ mô phỏng ngày càng được sử dụng rộng rãi trong mọi lĩnh vực hoạt động của con người từ mô phỏng các vụ nổ hạt nhân, phản ứng hóa học đến mô phỏng các cơn bão và thảm họa thiên nhiên như động đất, lũ lụt; từ mô phỏng trong nghiên cứu, phát triển khoa học, công nghệ đến ứng dụng mô phỏng trong lĩnh vực giáo dục, đào tạo. Một chương trình máy tính có thể mô phỏng diễn biến điều kiện thời tiết, các mạch điện tử, phản ứng hóa học, cơ điện tử, hệ thống điều khiển tương tác, thậm chí cả các quá trình sinh học cực kỳ phức tạp. Về lý thuyết, bất kỳ sự vật, hiện tượng nào có thể được mô tả bằng dữ liệu và phương trình toán học đều có thể được mô phỏng trên máy tính. Mô phỏng thường là rất khó khăn vì hầu hết các hiện tượng tự nhiên có số lượng gần như vô hạn các tham số gây ảnh hưởng. Vì vậy để phát triển các ứng dụng mô phỏng có hiệu quả cần xác định những yếu tố quan trọng nhất ảnh hưởng đến mục tiêu của nhiệm vụ mô phỏng.
Dùng chương trình mô phỏng BlackMax để tìm kiếm các bằng chứng về các chiều của không gian còn lại có thể tồn tại trong vũ trụ.
Ngoài ra, để bắt chước các quá trình nhằm xem cách chúng hoạt động theo các điều kiện khác nhau, người ta còn dùng phương pháp mô phỏng để kiểm tra lý những thuyết mới. Sau khi tạo ra một lý thuyết về mối quan hệ nhân quả, nhà khoa học có thể hệ thống hóa các mối quan hệ bằng một chương trình máy tính. Nếu chương trình sau đó hoạt động trong cùng một cách như là quá trình thực tế thì ta có thể kết luận và dự đoán các mối quan hệ được đề xuất là chính xác.
Lịch sử phát triển
Từ 2000 năm trước, Tôn Tử - nhà chiến lược của Trung Hoa cổ đại - đã viết trong binh pháp của mình là: trước mỗi trận chiến, người cầm quân hãy suy nghĩ cho chín muồi trước khi đưa ra bất kỳ quyết định nào. Đó chính là ý tưởng chủ đạo của khái niệm mô phỏng ngày nay.
Các trò chơi mô phỏng chiến tranh đã có lịch sử trong thế kỷ XVII và XVIII ở nước Phổ, xuất phát từ trò chơi cờ tướng để mô phỏng các nguyên tắc sử dụng lực lượng quân sự đối kháng.
Thế kỷ 19 đã chứng kiến sự cải tiến của những trò chơi mô phỏng dựa trên các nghiên cứu cẩn thận về các hoạt động quân sự. Mục đích là để mô hình hóa các hoạt động quân sự một cách thực tế nhất có thể. Người ta đã thay thế bàn cờ bằng các bảng cát và sau đó thay thế bảng cát bằng các bản đồ tỷ lệ lớn. Mô phỏng đã được đưa vào huấn luyện sỹ quan quân đội Đức trong việc lập kế hoạch và thử nghiệm các hoạt động quân sự. Thành công quân sự của Đức trong thế kỷ 19 một phần là nhờ sử dụng mô phỏng để dạy chiến thuật và luyện tập ra quyết định cho sỹ quan và binh lính trước khi bước vào chiến đấu thật. Người Đức tiếp tục tăng cường sử dụng mô phỏng như là một kỹ thuật huấn luyện và lập kế hoạch sử dụng lực lượng trong thế chiến I. Do những giới hạn của Hiệp ước Versailles ngăn cản nước Đức nghiên cứu phát triển tiềm lực quân sự, quân đội Đức đã sử dụng mô phỏng để tiến hành huấn luyện thực tế với các thiết bị và hệ thống vũ khí mô phỏng để chuẩn bị cho Thế chiến II. Người Mỹ cũng đã bắt đầu sử dụng mô phỏng theo cách trò chơi chiến tranh mà người Đức đã dùng từ cuối thế kỷ 19 và đã ứng dụng nó trong thế chiến II.
Kuwait Flight Simulation Center
A driving training center
A drone control system based on a NASA simulator
Sau thế chiến II. Quân đội Hoa Kỳ tập trung nỗ lực mô phỏng của mình vào hoạt động nghiên cứu và phân tích hệ thống.
Với sự phát triển mạnh mẽ của CNTT, từ thập niên 1980 các nước phát triển bắt đầu phát triển các ứng dụng mô phỏng nhằm không chỉ đáp ứng yêu cầu to lớn của ngành công nghiệp giải trí mà còn phục vụ nhu cầu ngày càng tăng của đào tạo và giáo dục trong cả quân sự và dân sự.
Hiện nay, mô phỏng, từ vai trò là một công cụ hỗ trợ nghiên cứu cho quân đội trong một số mặt nào đó, đã trở thành một trọng tâm chính và là yếu tố quan trọng nhất trong cấu trúc và quy hoạch của nhiều lĩnh vực quân sự trên toàn thế giới, không chỉ về đào tạo mà còn cả trong việc lên kế hoạch và thực các nhiệm vụ của quân đội.
Mô phỏng là một trong số ít các khu vực mà ngân sách quân sự đã không phải chịu đựng nặng nề như những lĩnh vực khác, cơ bản là vì mô phỏng được sử dụng ngày càng nhiều hơn để thay thế cho việc đào tạo truyền thống với thiết bị thực. Nó cho phép các nhà hoạch định quân sự chuẩn bị và đào tạo lực lượng của họ cho những cuộc đụng độ phức tạp trong tương lai. Mô phỏng đã được sử dụng để dự báo, phân tích và lập kế hoạch cho các cuộc xung đột tiềm năng với độ chính xác mà công nghệ thế hệ trước không thể đạt được.
Công nghệ mô phỏng sẽ cho phép các nhà sản xuất xây dựng các hệ thống quân sự và thương mại nhanh hơn, tốt hơn và với chi phí thấp hơn. Với tốc độ hiện tại của phát triển công nghệ, những gì được coi là đầu tư hôm nay sẽ trở thành mẫu thử nghiệm ngày mai chỉ sau một thời gian rất ngắn.
The game industry has grown by simulation technology
Combat pilot training equipment
Battlefield simulation in VR-Forces
Các thành phần một hệ thống mô phỏng
Để xây dựng một hệ thống mô phỏng cần mô hình hóa cái mà người ta muốn mô phỏng. Sau đó xây dựng mối quan hệ giữa các đối tượng và thực thể tham gia hệ thống mô phỏng. Tiếp đó cần có các thuật toán và chương trình bảo đảm toán học cho hoạt động của từng thực thể, đối tượng và toàn bộ hệ thống. Tùy theo bài toán cụ thể mà việc bảo đảm vật lý, vật chất cho quá trình mô phỏng có thể khác nhau.
Để tiến hành mô phỏng một sự vật, hiện tượng, người ta sử dụng ba loại mô hình: mô hình toán học, mô hình vật lý và các quy trình.
Mô hình toán học bao gồm các thuật toán và phương trình toán học.
Quy trình phát triển ứng dụng mô phỏng
Mô hình vật lý mô phỏng về mặt vật lý của một đối tượng và mối liên quan đến các đối tượng, mô hình khác trong các loại hình mô phỏng.
Các quy trình là biểu hiện của mối quan hệ năng động của các tình huống cụ thể thể hiện bởi các quá trình toán học, vật lý và logic.
Phần cứng mô phỏng là các thiết bị liên quan đến các hệ thống máy tính, các hệ thống truyền thông, điện tử, cơ khí và các hệ thống trang thiết bị khác được tích hợp phục vụ mô hình hóa các thực thể tham gia mô phỏng.
Phần mềm mô phỏng là một tập hợp các thuật toán (chương trình máy tính) “bắt chước” dựa trên quá trình hoạt động của mô hình một hiện tượng thực tế. Về cơ bản, đó là một chương trình máy tính cho phép người sử dụng dùng để quan sát một hoạt động thông qua mô phỏng mà không phải thực hiện thật hoạt động đó. Phần mềm mô phỏng được sử dụng rộng rãi để kiểm tra thiết kế một sản phẩm nào đó để thấy được sản phẩm cuối cùng với đầy đủ thông số kỹ thuật tốt nhất mà không tốn kém trong quá trình sửa đổi. Phần mềm mô phỏng tương tác với thời gian thực thường được sử dụng từ các trò chơi (games) đến các ứng dụng trong công nghiệp, quân sự để giảm bớt các chi phí hoạt động thật rất tốn kém, chẳng hạn như dùng để huấn luyện các phi công tập lái máy bay, các nhà khai thác vận hành nhà máy điện hạt nhân, mô phỏng thời gian thực của các phản ứng vật lý, hóa học… đào tạo thực hành trong các môi trường độc hại, rủi ro…
Mô phỏng mang lại lợi ích to lớn: Tiết kiệm thời gian, kinh phí, nguyên vật liệu, tránh được những trường hợp rủi ro, nguy hiểm trong điều kiện thực, giảm tác động xấu tới môi trường…, thậm chí có thể làm được cái không thể làm trong điều kiện thực.
Thực tế ảo
Thực tế ảo (virtual reality - VR) là một thuật ngữ dùng để chỉ một hệ thống giao diện cấp cao giữa người sử dụng và máy tính. VR có khả năng mô phỏng các sự vật, hiện tượng theo thời gian thực và tương tác với người sử dụng thông qua việc tổng hợp các kênh cảm giác.
Lần đầu tiên xuất hiện vào khoảng đầu thập kỷ 90 nhưng trong vòng gần chục năm trở lại đây Công nghệ thực tế ảo mới phát triển thực sự nhờ tính lưỡng dụng (trong cả dân dụng lẫn quân sự) và đóng vai trò là công nghệ mũi nhọn ở Mỹ và châu Âu.
Theo dự đoán của công ty nghiên cứu Gartner, công nghệ thực tế ảo đứng đầu danh sách 10 công nghệ chiến lược năm 2009. Tại Mỹ và châu Âu thực tế ảo đã và đang trở thành một công nghệ mũi nhọn nhờ khả năng ứng dụng rộng rãi trong mọi lĩnh vực (nghiên cứu và công nghiệp, giáo dục và đào tạo, du lịch, dịch vụ bất động sản, thương mại và giải trí...) và tiềm năng kinh tế, cũng như tính lưỡng dụng (trong dân dụng và quân sự) của nó.
Công nghệ thực tế ảo đem lại lợi nhuận to lớn cho các hãng phần mềm Game giải trí
Sử dụng đồ họa 3D để mô phỏng tạo nên các cảnh hoành tráng trong phim 3D “Avarta”
Nguồn: www.pcworld.com.vn
タグ
関連ニュース

縁起と因果 – 根本から企業を育てる道
現代のビジネスは、スピードや競争力だけではなく、内側からの明晰さと誠実さが問われる時代になっています。 SAO-EE(快適性とエネルギー性能のシミュレーションを行う会社)では、仏教の基本的な教えである「縁起(えんぎ)」と「因果(いんが)」を、企業経営に応用しています。 それは、単なる哲学ではなく、日々の判断・行動・つながりの根拠となる道しるべだと考えています。 🌱 1. 縁起 – すべては因縁によって生まれる 「これがあれば、それがある。これがなければ、それもない。」 お客様は偶然に現れるわけではなく、プロジェクトも運では決まりません。信頼される企業は、ただ存在しているだけでは成り立ちません。 そこには、誠実な行動・信頼関係・タイミング・人との縁といった、無数の要素が関わっています。私たちはそれを意識して、毎日地道に育んでいます。 ⚖️ 2. 因果 – 種を蒔けば、実がなる 一つ一つの誠実な提案は、「善き種」です。 丁寧な対応は、「信頼という芽」を育てます。 「断る」場面も、思いやりを持てば「未来のご縁」になります。 私たちは、数だけを追いません。価値・信頼・真摯な関係性を育てています。その結果は、ゆっくりと、でも確かに、現れてきます。...
詳細を見る
持続可能なオフィス空間の構築:ステップバイステップガイド
あなたは、自分のオフィスがよりグリーンな未来に貢献できると考えたことがありますか?🌿環境意識が高まる今、持続可能なワークスペースの実現は単なるトレンドではなく、企業にとっての責任です。しかし、多くの人が迷い、どこから始めればよいかわからないのが現状です。ご安心ください!この変革は困難で複雑に思えるかもしれません。エネルギー利用の最適化から廃棄物管理、室内空気品質の改善からエコフレンドリーなインテリア設計まで、考慮すべき要素は多岐にわたります。しかし適切な指針があれば、グリーンオフィスの実現がこんなに簡単だとは驚くことでしょう!本記事では、持続可能なオフィス空間の理解から始まり、現状評価、そして緑のビジョンを実現するための具体的なステップまで、ワクワクするような旅路をご一緒に探っていきます。効率的でありながら環境にも配慮した職場を共に作りましょう!🌍💚 持続可能なオフィス空間の理解 定義と重要性:持続可能なオフィスとは、環境への悪影響を最小限に抑えつつ、従業員の健康と生産性を高めるように設計・建築・運営される空間です。その重要性は、環境保護、コスト削減、そしてポジティブな職場環境の構築にあります。 世界的なトレンド:グリーンオフィスの流れは世界中に広がっています。多くの大企業がLEED、BREEAM、WELL Building Standardなどの基準を採用しています。主なトレンドには以下があります: 再生可能エネルギーの活用 自然光の最大活用 スマートエネルギー管理の導入 オフィス内の緑化の促進 環境と従業員へのメリット: 環境へのメリット 従業員へのメリット CO₂排出量の削減 健康・士気の向上 天然資源の節約 生産性の向上 廃棄物の削減 仕事満足度の向上 生態系の保護...
詳細を見る
持続可能な建築設計:建築家が知るべき5つの指標
はじめに世界中でエネルギー基準がますます厳しくなる中、建築家は多様な課題に対応する必要があります。最初のステップは、初期段階からの分析と多分野との連携のために、重要な指標を理解することです。建築物は世界のCO2排出量の39%を占めており、設計業界はデータに基づくエネルギー効率の統合へと進化しています。この変化は、建築家が建物性能の専門家としての役割を担うようになり、高効率かつ健康的な空間の創出を可能にします。以下は、すべての建築家が知っておくべき持続可能な建築設計における重要な5つの指標です。 1. エネルギー使用強度(EUI - kBtu/ft²/年)EUIは、建物の運用に必要な年間エネルギー消費量を示します。統合的な設計によって、運用コストとメンテナンスコストを削減し、空気の質、温熱快適性、自然採光の向上が期待できます。エネルギーシミュレーションを行う際は、設計上のあらゆる決定がEUIにどう影響するかを理解することが重要です。建物構造、窓の割合、受動的・能動的手法、空調負荷などがEUIに大きく関与します。EUIは「年間エネルギー消費量 ÷ 床面積」で算出され、単位はkBtu/ft²/年です。EUIを理解・予測することで、年間のエネルギーコストを見積もることができます。主な構成要素は暖房、冷房、照明、機器、ファン、ポンプ、給湯です。 2. 日照計画 – sDAとASEsDA(空間的昼光自律性):作業面(床から76cm)において、年間の勤務時間(8時~18時)の50%以上にわたり、300ルクス以上の自然光が得られる床面積の割合を示します。ASE(年間日射曝露):年間250時間以上にわたり、直射日光で1000ルクスを超える床面積の割合。過度な日射はグレアや冷房負荷の増加を招く可能性があります。効果的な自然採光設計には、建物形状、材料、内装の色(天井、壁、床)、庇・ルーバー・反射棚などの日射遮蔽装置、隣接建物や植栽などの外的要素も関係します。 3. カーボン排出量(CO2eトン/年)– 埋め込みカーボンと運用カーボン埋め込みカーボン(Embodied Carbon):材料のライフサイクル全体(採掘、製造、輸送、設置、交換、解体、処理)で発生するGHG排出量。運用カーボン(Operational Carbon):建物の運用・維持管理におけるGHG排出(空調、照明などのエネルギー使用を含む)。設計初期段階で評価を行えば、埋め込みカーボンを最大80%削減可能です。パリ協定の目標を達成するには、建築からの排出削減が不可欠です。 4. 屋内水使用強度(WUI - gal/ft²/年)WUIは、1平方フィートあたりの年間飲料水消費量を示します。飲料水使用は地球全体の淡水資源の大部分を占めるため、水利用の効率化は極めて重要です。主な対策は以下の通り:...
詳細を見る